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Handling complex boundaries on a Cartesian grid using
surface singularities

Johan Revstedt*,1 and Laszlo Fuchs

Di6ision of Fluid Mechanics, Lund Institute of Technology, Lund, Sweden

SUMMARY

This paper considers flow around arbitrarily shaped objects. The boundary conditions on the solid
boundaries have been applied by replacing the boundary with a surface force distribution on the surface,
such that the required boundary conditions are satisfied. The velocity on the boundary is determined by
interpolation or by local (Gaussian space) average. The source terms are determined iteratively as part of
the solution. They are then averaged and are smoothed out to nearby computational grid points. The
method has been applied both to test problems as well as to more complex engineering problems, where
there are not many real competitive alternatives to the proposed method. Simulations of creeping flow
around a sphere were studied in order to evaluate the performance of different, competitive approaches
of imposing boundary conditions. Using local averaging first-order accuracy is obtained; this can be
improved by using a Lagrangian polynomial instead, although the convergence is then considerably
slower. Simulations of flows around spheres in the Reynolds number range 1–1000 have been carried
out. Finally, the approach was used to describe the impellers in a turbine agitated mixer. For these cases,
the results show overall good agreement with other computational and experimental results. Copyright
© 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In most practical computational fluid dynamics (CFD) applications, the geometries of the solid
boundaries are often very complex, e.g. wing sections, turbine cascades, bifurcating pipes, etc.
The usual approach taken when simulating such flows is using either finite difference or finite
volume methods, with a body fitted co-ordinate system and associated blockwise structured
grids. Alternatively, one may use finite volume/element methods on unstructured grids.
However, finite volume methods can only, with a considerable amount of work, be used with
a discretization accuracy higher than second order (e.g. Fletcher [1]). Higher-order discretization
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is almost always needed for attaining good accuracy without the need for very fine spatial
resolution. In some cases, higher-order methods are required due to the difficulty to highly
resolve the scales of the flow themselves. This is the situation when direct numerical simulation
(DNS) is sought for as high a Reynolds number as possible. The situation is similar for large
eddy simulations (LES), since the resolved scales are of the order of the grid size. Generalized
co-ordinates require that the co-ordinate transform matrices (Jacobians) have to be stored or
be recalculated. In addition to this requirement, by co-ordinate transformation, additional
terms appear in the governing equations. These terms imply a considerable increase in the
number of computational operations. Furthermore, non-uniformities in the grid cause a
slowdown in the convergence rate of many iterative solvers. Also, the grid generation has to
be carried out with great care, as degenerate computational cells can, at least locally,
dramatically increase the numerical errors. A further aspect not very often considered is that
the grid that is generated a priori is seldom optimal for the particular problem that is being
solved.

Using Cartesian grids, the structure of the solver is substantially simplified and the
implementation of higher-order discretization is straightforward. However, the classical way of
describing complex boundaries on such grids (full and partial blocking of computational cells)
leads to low-order accuracy near the boundaries. This problem can be treated in some ways.
For example Gullbrand et al. [2] used a method in which the boundary conditions are
interpolated to the right position in the domain leading to improved accuracy. There are some
potential drawbacks with this approach, primarily when the resolution is not adequate. One
could think of using moving grids (fixed to the boundaries). This approach would imply that
a grid has to be generated in each time step. The grid has also a tendency to be skewed and/or
with a largely variable aspect ratio. These two factors imply a reduction of computational
accuracy and efficiency. One also has to account for an additional condition (on the grid) so
as to satisfy mass conservation [3].

Another alternative to the above-mentioned approaches is to use overlapping grids. By this
technique, one may generate, independently, a grid around different components of the
problem so that the union of all grids ‘cover’ the full domain of interest. If the grids are
imposed to match each other, one obtains patched grids. By removing this constrain and by
allowing the grids to overlap each other one may solve the flow past arbitrarily moving objects
without the need to regenerate new grids. This technique started to evolve in the mid-1980s for
two-dimensional problems (e.g. Fuchs [4]) and was extended to the three-dimensional case in
the 1990s (e.g. Tu and Fuchs [5]).

The overlapping grid (also known as the ‘chimera’ grid) approach is a good alternative for
cases where the boundaries are not affected by the fluid. For cases where the boundary
conditions are determined by the interaction between the object and the surrounding flow (and
fluid), the current approach is preferable. For the sake of comparison, however, we consider
here only solid objects.

The use of momentum sources to describe boundaries, also referred to as ‘fictitious domain’
methods, can be traced to different early attempts in the 1970s by Peskin [6]. He applied the
basic approach for studying the flow of blood past an elastic (initially two-dimensional)
heart-valve leaflet. Since then different variants of this family of methods has been proposed.
Some particularly active individuals in the field have been Peskin [6–8], Zaleski [9,10],
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Trygvasson [11] and Shyy [12,13]. This short list is not exclusive, and further references may
be found in the references given herein. The main differences among the different approaches
lie in the implementation of the technique rather than on the basic principles. Thus, the basic
approach is generally the same but methods for determining the magnitude of the sources
differ. The idea is to determine the effect an object has on the fluid by adding source terms to
the momentum equations. Glowinski et al. [14–16] studied flow around cylindrical shapes
using a finite element approach. Two-dimensional flow in pipes and cavities, with Reynolds
numbers up to 1000, were studied by Ionkin and Churbanov [17]. Saiki and Biringen [18]
obtained results that correlate well with measurements for flows around cylinders, both
stationary and oscillating, using the method by Goldstein et al. [19]. The approach we use
differs from the method by Goldstein et al. [19] in the way the body forces are computed. It
is believed that our approach has the potential to incorporate into a multi-grid solver. The
approach allows also locally refined girds to be combined with the body force method.

All of the studies mentioned above concern primarily two-dimensional flow or low Reynolds
numbers or both. The goals of this work have been to (a) propose a new algorithm for
determining the body forces, (b) compare the accuracy of the basic method with two
alternative approaches, (c) apply different types of boundary conditions and their interaction
with the local spatial resolution, (d) demonstrate the applicability of the method, (e) study the
applicability of the method for LES of high-Reynolds number flows. Here, we consider both
stationary and moving three-dimensional objects at low as well as higher Reynolds number.
We also consider the interplay between boundary conditions and the local spatial resolution.
To determine the numerical order of accuracy of the method, we consider the Stokes flow
around a sphere. We have also studied the case of an oscillating sphere and compared, and the
motion of arbitrarily shaped blades placed in a cylindrical (non-axisymmetric) tank. For the
last case we compare our results with experimental data from the literature.

2. MATHEMATICAL FORMULATION

2.1. Go6erning equations and boundary conditions

The equations governing isothermal, incompressible flow of a Newtonian fluid can be written
as
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where Fi is a source term.
The system of Equations (1) and (2) is well posed if the d-conditions are imposed on all the

boundaries, where d is the dimension of the problem. In addition, one must also satisfy global
mass conservation. In the case of solid walls, one applies usually the no-slip condition, which
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implies that the local fluid velocity equals the velocity of the boundary at the same point. For
non-solid object boundaries, the stresses have to be in balance. This type of boundary
condition can be given implicitly and hence has to be determined as part of the solution. At
inflow and outflow, the velocity vector and its gradient respectively are often assumed. The
same number of conditions has to be imposed, even when other expressions are used. Other
types of conditions, such as for a boundary with surface tension, could be applied equally.

The body forces Fi in our cases vanish normally. However, we shall replace some of the
boundaries by a force distribution on the surface of the boundary. In this case, the body forces
Fi are computed on the boundaries so as to satisfy the local boundary conditions. Thus, Fi do
not vanish only on certain surfaces. This singularity has, of course, an impact on the numerics
involved in solving the equations.

2.2. Turbulent flows

To model the turbulent flows presented here we have used LES. LES is based on spatial
filtering of the equations of motion rather than on the time averaging used in traditional
turbulence modelling. The space filtering of a function f(xi, t) is defined as

f(xi, t)=
&�

−�

G(xi−x %i )f(x %i, t) dx %i (3)

where G is a filter function.
The space filtered equations for the conservation of mass and momentum for an incompress-

ible Newtonian fluid can be written, using summation convention, as
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where

tij=uiuj−uiuj

where Fi is a source term which, in this work, is used to invoke the effects of solid boundaries.
The term tij is the sub-grid scale (SGS) stress tensor, which reflects the effect of the unresolved
scales on the resolved scales. This term is often expressed as a function of the filtered rate of
strain, e.g. the Smagorinsky model [20]. In this paper, however, an implicit model is used, i.e.
the numerical truncation error acts as an SGS term. The rationale of using implicit models is
as follows: LES requires high numerical resolution such that the flow quantities under
consideration have an asymptotic behaviour (which does not imply that all quantities have
similar properties). In a turbulent field, which is more or less is in equilibrium, there exists an
energy cascade by which energy is extracted from the large-scale motion through smaller and
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smaller scales. At the smallest scales (for which the viscous and the inertial forces balance each
other), the kinetic dissipates into heat. Any SGS model must account for these dissipative
effects. Without this role, there will be a continuous build-up of kinetic energy at the smallest
resolved scales. Therefore, neglecting this effect would not lead to a catastrophic result. SGS
models also have other roles (such as accounting for the interaction between the unresolved
and resolved scales). Also, having adequate spatial resolution implies that the SGS has to
approach asymptotically a monotone behaviour. In particular, if the spatial resolution
improves, the SGS model would be less and less important (it should vanish, or be of the order
of the truncation errors for DNS). The truncation errors of the discrete system act dissipa-
tively. These terms do not have any further physical role so as to account for SGS interactions.
Among these roles one may mention the effects of the unresolved scales on the resolved one
in the average and instantaneous sense (inducing back-scatter). This part of the SGS can be
handled explicitly by different SGS models, such as ‘dynamic’ models (e.g. Held and Fuchs [21]
and Olsson and Fuchs [22,23]).

In several of the cases presented here, the flow is laminar. The above discussion should,
therefore, be limited to the cases where the wake is turbulent. In laminar flows all the scales
of the flow are resolved and the filter function G in Equation (3) is identical to the Dirac d

function. This statement is correct on the differential equation level. However, all discrete
approximations to the continuous variables imply filtering [24]. Thus, a consistent way of
handling the singular force terms is by considering their spatial average, even in laminar (or
DNS) cases.

3. NUMERICAL METHODS

3.1. Flow sol6er

The incompressible Navier–Stokes equations are discretized on a system of locally refined
Cartesian grids (e.g. Fuchs and Zhao [25]). The dependent variables are defined on a staggered
grid. This arrangement has the advantage that the system requires three boundary conditions
(e.g. the velocity vector) on all boundary points. The different terms of the momentum and
continuity equations are approximated by finite differences. Basically, one may use finite
differences of any order. However, for higher orders (i.e. more than two) additional boundary
conditions have to be specified. For some of the Reynolds numbers under consideration, the
grid is unable to resolve the smallest scales, and hence one has to add ‘numerical viscosity’ so
as to adjust the local scale to the grid size. This can be achieved directly (i.e. implicitly) by
using an ‘upwind’ finite difference scheme for the convective terms. Here, we use upwind finite
differences of first- or third-order accuracy. The lower-order scheme (first-order for the
convective terms and second-order for the others) implies that the low-order terms dominate,
leading to a high level of numerical dissipation. Using directly higher-order (third- and
fourth-order approximations respectively) leads to a less robust solver with a considerably
slower convergence rate. To combine numerical efficiency with higher-order accuracy, we
introduce the higher-order terms as a ‘single-step’ defect correction [26]. One can show that,
for smooth problems, this procedure is adequate to maintain the theoretical accuracy of the
high-order scheme.
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The time integration is done by a three-level implicit scheme. In each time step, the system
of equations is solved iteratively using a multi-grid solver. The relaxation scheme within the
multi-grid solver comprises of pointwise relaxation of the momentum equations coupled with
a pointwise smoothing of the continuity equation. At the latter step, both the velocity vector
and the pressure are corrected so that the residuals of the momentum equations shall not be
changed as the continuity equation is satisfied. This approach is equivalent to an approximate
diagonalization of the system of equations [25,26].

The basic numerical procedure of the technique used here is composed of the following
steps:

1. Spatial discretization of the boundary surface.
2. Determine the boundary conditions (using the dependent variables on the full computa-

tional grid): ‘interpolation’ step.
3. Determine the defect to the surface force.
4. Distribute the surface force to the surrounding space.

Items 1–4 may be done in different ways, which of course has an effect on the numerical
accuracy and efficiency of the scheme. In the following we elaborate some of the options that
we have employed.

3.2. Boundary conditions

Objects are modelled by adding momentum sources to the Navier–Stokes equations (5). The
magnitude of these sources is determined iteratively based on the defect in satisfying the
boundary conditions. First, the surface of the boundary is discretized. On these nodes the
desired boundary conditions have to be satisfied. Of course, the surface nodal points do not in
general coincide with the discretization of the (three-dimensional) computational domain.
Thus, in order to satisfy the boundary conditions, the appropriate variables have to be found
on the surface nodal points. For a solid object, we apply no-slip conditions. For a stationary
object, this implies that the velocity on the surface should vanish. This velocity, at the discrete
surface points has to be determined by some interpolation to those points. For non-solid
objects, stress boundary conditions may be specified. In such situations, the variables that are
computed on the boundary surface will be the stresses themselves and not the velocity
components as in the previous case.

As stated above, after discretizing the boundary surface, one has to determine if the
boundary conditions are satisfied. Information has to be transferred from the computational
grid to the surface grid. This can be achieved by different types of interpolations. It should be
noted that it is not self evident that a higher-order interpolation scheme is to be preferred. For
example, for a solid object, the velocity has to vanish on the surface. When the object is
replaced by a body force, the velocity field shall have piecewise continuous gradients. The
jump in the stress is directly related to the strength of the force distribution. In this case, a
higher-order polynomial interpolation may result in oscillatory behaviour (Gibb’s effect). For
this reason we have studied several options for interpolating data to the boundary surface. The
fluid velocity (ui

f) in surface nodes has to be determined. In this work we have studied two
ways of doing this. The most straightforward approach is using the Lagrange interpolation
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formula (in multiple dimensions). The procedure was adopted from a three-dimensional
Lagrangian interpolation algorithm by Ericsson and Fuchs [27]
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The second approach is to average the velocities on the given computational grids. One may
argue that if one would employ the ‘interpolation’ and ‘distribution’ operators that are the
inverse of each other (in some sense) then there would be minimal error committed in these
operations. By this argument, if one would use a Gaussian ‘distribution’ step, one could argue
for using also a Gaussian averaging for the ‘interpolation’ step. Thus, the Gaussian interpola-
tion scheme for the boundary velocity (ui

f) would be
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where jj is the boundary position normalized with the mesh spacing and GF is a Gaussian
distribution function
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The variance, s, is of the order of the computational grid size.
The next step in the algorithm (Step 3) is to compute the components of Fi, such that the

boundary conditions are satisfied. For the solid (stationary object) this implies that (ui
f)

vanishes. We argue that, near the solid boundary, the dominating term is the viscous term in
the momentum equations. Thus, a change (error) in the boundary velocity (dui

f) has to be
balanced by a change in the body force DF0 i on the surface. This implies that

F0 i
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where ui
b is the specified boundary velocity, n is the iteration number (not to be confused with

the time step), DFi=F0 i
n−1 and a is a constant added to ensure both numerical stability as well

as optimal convergence.
The final step of the algorithm (Step 4) is to ‘distribute’ the surface forces F0 i to the

computational domain Fi. The consistent way of distribution would be if the surface d function
is averaged (distributed) in the same way as the discrete approximation. Thus, for second-order
finite differences one could use a spatial ‘top-hat’ function. On the other hand, as it is argued
above, one would like to have ‘interpolation’ and ‘distribution’ operators that are the inverses
on each other. For the time being we use, therefore, the Gaussian distribution (7) and (8).
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4. FLOW AROUND A SPHERICAL OBJECT

4.1. Creeping flow—Stokes’ solution

Consider creeping fluid motion (Re�1) around a solid spherical object. For this particular
flow case, an exact solution was first derived by Stokes [28]. Using the spherical polar
co-ordinate system shown in Figure 1, the velocity components can be written as

ur=U cos u
�

1+
a3

2r3−
3a
2r
�

(11)

uu=U sin u
�

−1+
a3

4r3−
3a
4r
�

(12)

where a is the sphere radius and U is the free stream velocity.
In order to achieve acceptable numerical accuracy, the boundary velocity must be deter-

mined in a proper manner. Two approaches have been studied in this work: Lagrangian
interpolation from values outside the boundary (6) and spatial averaging, Equations (7) and
(8), with a Gaussian weight function using velocity values on both sides of the boundary. The
properties of these approaches were studied by using Stokes’ exact solution for the velocities.
The computational domain (shown in Figure 1) is a cubic box with the side length 2Dsp,
centred in this box is a spherical body with diameter Dsp. Four levels of grid resolutions are
used with 163, 323 and 1283 grid points respectively. We compare the accuracy of the following
methods.

Figure 1. Geometry and co-ordinate systems of the Stokes flow simulations.
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(a) Computational cells that belong to a solid object are excluded, i.e. not updated by the
solver. This is referred to as ‘blocking’.

(b) The ‘force’ method with Gaussian ‘interpolation’ (using Equations (7) and (8)). This
method is referred to as the ‘Gaussian’ method.

(c) The ‘force’ method with Lagrange interpolation formulation (Equation (6)). This is
denoted the ‘Lagrangian’ method in the following.

The different computed cases are given in Table I. The results with the different methods have
been compared with the exact solution (Equation (12)). The exact Stokes solution has been
applied on the outer boundaries and the Reynolds number has been set to 0.01 in all the
simulations.

4.1.1. Numerical accuracy. The Gaussian method using 5×5×5 cells cube (Case 1) was
compared with the Lagrangian method using 2×2×2 points (Case 2) and 3×3×3 points
(Case 3) respectively. Figure 2 shows maximum- and L2-norms of the error in boundary
velocity. As can be seen in this figure, Case 3 results in a lower error level than the other two
methods, especially at higher resolutions.

The maximum- and L2-norms of the errors in the velocity components in the x- and
y-directions are plotted in Figure 3. It is evident that cell-‘blocking’ gives better performance
than the Gaussian averaging. However, the interpolation approach gives over all the smallest
errors and the solution order is higher (Table II).

Covergence histories of the boundary velocity for the Gaussian and Lagrangian approaches
using 643 grid points are shown in Figure 4. The Gaussian approach exhibits faster conver-
gence than the Lagrangian and it is also computationally less expensive. It is also clear that the
convergence rate is far from optimal. For time-dependent flows, in which one has to take small
time-steps (for any reason), the convergence rate of the basic method is not a serious problem.
In other situations, the convergence rate of the basic method (cf. Goldstein et al. [18]) is also
poor. In Section 7.1 we outline the multi-grid implementation of our method which we believe
will remedy the slow convergence of the basic algorithm.

Table I. Computed cases of creeping flow past a sphere.

Grid size Boundary method

163 Blocking
Blocking363

643 Blocking
1283 Blocking

Gaussian163

Gaussian323

Gaussian643

1283 Gaussian
163 Lagrangian

Lagrangian323

643 Lagrangian
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Figure 2. Error in boundary velocity using the Stokes’ velocity field; (a) L2-norm x-direction,
(b) max-norm x-direction, (c) L2-norm y-direction, (d) max-norm y-direction.

Figure 3. Maximum- and L2-norms of velocity errors; (a) L2-norm x-direction, (b) max-norm x-
direction, (c) L2-norm y-direction, (d) max-norm y-direction.
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Table II. Solution order.

UBoundary method V

Max-norm L2-norm Max-norm L2-norm

Blocking 0.44 0.99 0.64 1.09
Gaussian 1.00 1.20 0.85 1.20

1.45 2.10 1.43Lagrangian 2.05

Figure 4. Convergence history (L2-norm) of the boundary velocity for the Lagrangian and the Gaussian
approaches.

4.2. Low-Reynolds number flow

Simulations of the flow around a sphere in the Reynolds number range 1–1000 have been
performed. The Gaussian interpolation approach was used since it is considerably faster than
the Lagrangian one. However, for Re=100, the other methods were also computed for
comparative reasons. The wake length and drag coefficient were calculated and compared with
measurement data and results from calculations by Shirayama [29] and Pruppacher et al. [30].
The geometry and the extent of the local grids are shown in Figure 5. The size of the
computational domain is 24Dsp×16Dsp×16Dsp. Two global multi-grid levels were used in
addition to the four levels of local refinements around the sphere. The size of the grids and the
grid resolution are presented in Table III. It has to be pointed out that the three-digit
‘accuracy’ of the calculated recirculation length is a sub-grid accuracy obtained by interpola-
tion and therefore the last digits contain the effects of several numerical errors.
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Figure 5. A schematic representation of the locally refined grid system.

Table III. Grid configuration.

SizeGrid Number of gridType
pointsnumber

24×12×121 Global 24Dsp×12Dsp×12Dsp

Global 24Dsp×12Dsp×12Dsp 48×24×242
32×16×163 Local 8Dsp×4Dsp×4Dsp

56×24×24Local4 7Dsp×3Dsp×3Dsp

5 Local 4Dsp×2Dsp×2Dsp 64×32×32
6 Local 4Dsp×2Dsp×2Dsp 64×64×64

4.2.1. Results. The velocity field at Re=100 is shown in Figure 6, note the symmetric
recirculation zone. This zone is reported to first appear at a Reynolds number of about 20 and
it remains stable up to about Re=275 [29]. Hence, for Re=1000, the flow in the wake lacks
symmetry and tends to be turbulent (Figure 7(a)). However, in a time-averaged sense, the flow
is still symmetric as can be seen in Figure 7(b). Comparing the length of the recirculation zone
for some Reynolds numbers and approaches to describing the body fairly good agreement with
results by Shirayama [29] and Pruppacher et al. [30] is obtained; although our results show a
somewhat shorter recirculation zone. Also, the length is only marginally affected by the type
of boundary description (Table IV).

The drag on the sphere (FD) has been studied in terms of drag coefficient, CD= (8FD)/
(rU2pDsp

2 ). To calculate the force one may study momentum balance in a control volume V
around the sphere. By integrating the steady Navier–Stokes equations in this volume, the force
can be obtained
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Figure 6. Velocity vectors at the sphere centre plane (Re=100).

Figure 7. Velocity field at the sphere centre plane; (a) instantaneous, (b) time-averaged (Re=1000).

Table IV. Length of the recirculation zone normalized with the sphere diameter.

Re PruppacherGaussian Lagrangian Blocking Shirayama
[29] et al. [30]

—0.386 — —50 0.384
100 0.930.8440.7360.7140.766

1000 2.05 — — — —
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Using Gauss’ theorem, this can be rewritten as
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where G is the surface of the control volume and n is the direction normal to the surface.
This way of calculating the drag is quite straightforward. However, it is more convenient to

compute the body forces directly by using the source terms already calculated. The force that
the fluid exerts on the sphere is obtained by integrating the body forces over the sphere surface

Fi=
&&

g

Fi dS (15)

Table V shows that there is very little difference between the ways of calculating the drag; we
have therefore used Equation (15) wherever possible. The discrepancy between the two
methods can be attributed to numerical integration errors.

Comparing the drag coefficients obtained from the simulations using the source term
approach at Re=100 with the ‘blocking’ method, one sees no significant difference, nor is
there any discrepancy with Shirayama’s [29] simulations (Table VI). The trend is the same for
other Reynolds numbers as can be seen in Figure 8. Figure 8 shows the drag coefficients for
several Reynolds numbers compared with measurements presented by White [31] and the
simulations by Shirayama [29].

Table V. Drag coefficient calculated with Equations (14) and (15).

Re Equation (14) Equation (15)

1 29.1 26.1
4.45110 4.454

50 1.630 1.620
1.1071.113100

Table VI. Drag coefficient at Re=100.

Re CD

Gaussian 1.107
1.104Lagrangian

Blocking 1.108
Shirayama [27] 1.104

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 125–150



FLOW AROUND ARBITRARILY SHAPED OBJECTS 139

Figure 8. Drag coefficient at some Reynolds numbers computed by the Gaussian averaging scheme.

4.2.2. Mo6ing boundaries. The advantages of using source terms over blocking of cells to
describe the boundaries becomes evident if one considers a non-stationary boundary, i.e. a
boundary moving relative to the main flow or even driving the main flow (e.g. a propeller).
Consider a sphere moving perpendicular to a parallel flow, with a velocity of its centre given
by

Vy=AU0 cos(vt) (16)

where U0 is the free stream velocity, A=0.15 and v=0.6.
Using blocking for this case, the grid will have to be regenerated at each instant and the

moving of the blocked cells can give rise to discontinuities in the velocity gradients and
consequently convergence problems. The source term approach will generate a much smoother
motion, as the location of the boundary is independent of the grid. The error is also strongly
periodic, which indicates that it is dependent on the magnitude of the boundary velocity.
Figure 10(a)–(h) shows the sphere during the period of motion, note the asymmetric and
lagging wake, as one would expect intuitively.

Next consider the errors in applying the no-slip boundary conditions. Since finite precision
arithmetic is used the estimated error is O(e0/h

2), where e0 is the machine accuracy and h is the
mesh spacing near the boundary. This relation stems from the viscous terms in the momentum
equations. The convergence history to machine accuracy, for the stationary case, is plotted in
Figure 9. The convergence rate is rather poor and further improvements in the algorithm are
proposed in Section 7.1. For the time-dependent case, reduction in each time step is rather
small (depending on the time step). However, when time step is not too large only a limited
number of iterations are required.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 125–150



J. REVSTEDT AND L. FUCHS140

Figure 9. L2-norm of errors in boundary velocity for a stationary sphere (Re=50).

5. BOUNDARY CONDITIONS AND SPATIAL RESOLUTION

An often-encountered problem is the implementation of appropriate boundary conditions.
This issue is less pronounced with body fitted grids, since for any viscous flow no-slip
conditions are applied on solid walls. Using the method presented in this paper one might
experience difficulties with imposing no-slip conditions if the size of the object in one direction
is of the order of the mesh spacing, at least at high Reynolds numbers, which is the case for
the impeller blades in Section 6. However, such boundary conditions are meaningful if the
boundary layer associated with the viscous effects is resolved. If, on the other hand, the
boundary layer is not fully resolved it is inconsistent using no-slip conditions. Under such
circumstances one could equally apply slip conditions, as one would do directly when viscous
effects are neglected. As we shall see, when we apply a singular force distribution, the
‘thickness’ of the force ‘layer’ is of the order of one mesh spacing for low Reynolds numbers.
This situation may be improved, by special treatment so as to achieve a ‘sub-grid’ resolution
of the singular force surface thickness (Section 7.2). With this aspect in mind we have
considered both applying the no-slip conditions and alternatively slip conditions at a solid
surface.

To demonstrate the difficulties with thin objects we first consider a well-resolved case: a thin
stationary disc at Re=40 with the same set-up as for the sphere (Figure 5). We apply either
the usual no-slip conditions or slip conditions (which in this case means that the flow normal
to the surface vanishes). Thus, with slip boundary conditions, the flow along both sides of the
disc surface is in parallel. Figure 11(a) and (b) shows the velocity vector of flow around the
disc no-slip and slip conditions respectively. The drag coefficients calculated with Equation
(15) give CD=1.97 in the no-slip case and CD=2.15 in the slip case, as compared with 1.8,
which is the value given in the literature (e.g. White [31]). Studying the velocity parallel to the
disc surface one can see that, in order to achieve zero velocity on the surface, the velocities on
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Figure 10. Velocity fields at several instants for a sphere performing a sinoudial motion perpendicular to
the main flow (Re=50). The arrows indicate the direction of motion.

either side of the surface must have opposite directions. This is clearly visible in Figure 12 and
it will lead to a de facto thickness of the plate equal to the grid size. However, if we instead
consider the high-Reynolds number case of a rotating impeller, the result will be quite different
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Figure 11. Velocity field at the disc centre plane (Re=40); (a) no-slip, (b) slip.

Figure 12. Velocity parallel to the disc at three radial distances, parallel to the axis of the disc. The disc
is located at x/D=1.

(as shown in Section 6) due to the fact that the boundary layer is not resolved. When, on the
other hand, the thickness of the disc is resolved, there are no problems in implementing no-slip
conditions.

6. IMPELLER STIRRED TANKS

The source term approach has also been applied on the description of the impeller in a stirred
tank. This is a case with a relatively high Reynolds number and several moving boundaries.
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6.1. Geometrical set-up

The simulations were performed in a water-filled cylindrical tank with a single six-bladed Rushton
turbine (6RT) and a six-bladed Scaba turbine (6SRGT) (Figure 13; Table VII). The blades are
centred both radially and axially in the tank. The geometrical outline and grid configuration
of the tank are indicated in Figure 14. The outline is the same as the one used in the simulations
by Revstedt et al. [32] and in the experimental work by Stoots and Calabrese [33]. Simulations
were made at a turbine speed (N) of 2.75 rps, which correspond to a Reynolds number
(Re= (rpNDla)/m) of 3800. The computational grid consists of three global multi-grid levels and
two levels of local refinement in the impeller region. On the finest global level the grid consists
of 323 cells. Here, we have only studied the flow in the immediate vicinity of the impeller, thereby
justifying the coarse grid on the global level. The mesh spacing is then 0.023 ·D in the impeller
region, which is in the order of the Taylor micro-scale as measured by Costes and Couderc [34].

Since the blade thicknesses are not resolved spatially, we assumed these to be grid independent
(i.e. infinitely thin). Therefore, we are faced with the problem of applying no-slip conditions.
Of course, no-slip conditions can be applied if the blade thickness are resolved or are assumed
to be directly grid dependent. The later situation is believed to be more problematic as compared
with using slip conditions (in this high-Reynolds number case). No-slip conditions are set on
the tank walls and on the baffles. The cylindrical shape is obtained by blocking out cells. The
hub and shaft of the turbine have been neglected.

6.2. Results

The velocity field relative to the impeller has been studied in order to get a qualitative as well
as quantitative picture of our boundary description. The phase average of a function g(t) is defined
as

Figure 13. Turbine geometries and surface grid; (a) Rushton turbine (6RT), (b) SCABA 6SRGT.

Table VII. Tank dimensions with notations as in Figure 14.

B C D la lp DpT H

0.1T6RT 0.5T 0.33T 0.2D 0.25D 0.5D0.444 m T
0.444 m T 0.1T 0.5T 0.36T 0.15D 0.28D 0.5D6SRGT
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Figure 14. Tank geometry, co-ordinate system and grid configuration.

ĝ(t)=
1

Ns

%
Ns

n=0

g(t+nT) (17)

where T denotes the period and Ns is the total number of samples. Due to spatial symmetry,
the period T is specified as the time it takes for the impeller to turn 60°. Data was sampled
along the positive y-axis at time intervals corresponding to an impeller movement of 1°. We
hereby obtain data in a cylindrical co-ordinate system without having to interpolate from the
Cartesian grid.

Figure 15 shows the phase averaged velocity as a function of angular position behind the
blade just off the impeller tip scaled with the tip velocity. As mentioned above, additional
complications can occur when imposing no-slip conditions on an infinitely thin surface. It is
clear that the use of no-slip conditions here leads to a strong flow towards the turbine centre
just behind the blade, which is not present in the measurements by Stoots and Calabrese [33].
Slip conditions on the other hand give a larger velocity in the radial direction than the one
observed experimentally. This is probably due to the fact that the slip condition allows the
generation of a too powerful recirculation zone. This zone is visible when considering the
velocity in the tangential direction (Figure 15). The effect of the boundary condition can also
be seen by normalizing the velocity by the mean azimuthal velocity. The counterparts of Figure
15 are depicted in Figure 16. The improvement of the current computations as compared with
our previous results (Revestedt et al. [32]) is evident.
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Figure 15. Velocity components for the 6RT scaled with the tip velocity as a function of angle just off
the impeller tip (r/D=0.505) at blade mid-height.

An important and often studied parameter for stirred mixers is the turbine power consump-
tion. It is customary to give power consumption of an impeller in the form a dimensionless
quantity, the power number P0

P0=
P

rN3D5 (18)

where P denotes the power, N is the revolutionary speed and D is the impeller diameter.
Experimental studies by Amanullah et al. [35] and Saito et al. [36] show that under non-aerated
conditions, the power required by the 6SRGT is 60–65 per cent less than what is required for
the Rushton turbine. Here we have calculated the power number in the following manor:

P0=
v

rn3D5 %
M

m=1

(Fur)m (19)

where M is the total number of boundary nodes. Our calculation shows a power reduction of
73 per cent for the 6SRGT as compared with the 6RT.

Figure 17 shows the phase averaged, relative to the turbine, velocity fields in an x–u plane
for the 6RT and the 6SRGT turbines respectively. The strong recirculation zone and the
trailing vortex pair, first detected by van’t Riet and Smith [37], of the 6RT are clearly visible.
In the wake of the 6SRGT blade, the recirculation is much less pronounced, which is the main
reason for the considerably lower power input as noted above.
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Figure 16. Velocity components for the 6RT scaled with the time-averaged velocity as a function of angle
just off the impeller tip (r/D=0.505) at blade mid-height.

7. DISCUSSION

Some important aspects of the ‘force’ methods have been demonstrated. The advantages of the
methods are clear for geometries that are flow- and time-dependent. If only time-dependence
exists, one may use other methods (such as overlapping grids) with equally good results. For
general cases, we believe that the current approach can be much more attractive once the two
main issues demonstrated in this paper are resolved. These two issues are related to numerical
efficiency and accuracy respectively.

In the following two sections we propose methods for resolving these issues. The implemen-
tation of these remedies is underway, and hence no numerical results are available yet.

7.1. Impro6ed computational efficiency

Handling non-Dirichlet conditions in an iterative process may lead to a considerable reduction
in computational efficiency. This happens often due to the fact that updating the boundary
conditions implies that the residuals of the system become non-smooth (containing large
amplitude, high-frequency error components). The smoothing process requires that the
boundary data are spread out over the whole domain (for elliptical problems, such as the one
we treat here). The error transport rate is rather poor if only the finest grid (with the largest
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Figure 17. Velocity field in a x–u plane; (a) 6RT, (b) SCABA (impellers are rotating from left to right)
6SRGT.

number of nodes) is used. Multi-grid methods can easily remedy this situation. The multi-grid
implementation that we propose has the following steps. After a given grid is relaxed
(including Steps 1–4 in Section 3.1), a coarse grid problem for the boundary force is defined.
The boundary ‘equation’ on the given grid (superscript k) is defined as

DFi
k=Ri

k (20)

Ri
k vanishes on the finest grid and on all grids when the boundary conditions are satisfied. The

‘error’ on the finest grid (M) is

Ri
M=a

ui
f−ui

b

h2 (21)

The ‘boundary equation’ on the coarser grid (k) is defined through the ‘error’ in the finer
grid Ri

k+1

Ri
k=Ik

k+1Ri
k+1+a

ui
f−ui

b

h2 (22)
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where the velocities are taken on the coarse grid. The coarse grid force is given by

F0 i
k=Ik

k+1F0 i
k+1 (23)

The operator Ik
k+1 stands for a (linear) interpolation of the values on the surface, belonging

to a finer surface grid to give a value on the corresponding coarse grid surface cell.
In the full multi-grid calculations, one has to satisfy Equation (20) during the relaxation

process. Once the coarsest grid has been fully solved, the correction to the body force (i.e. the
change in F0 i

k after and before relaxations) is interpolated and added to the existing force on the
surface node points.

One also should note that the ‘distribution’ steps of the algorithm (i.e. Steps 2 and 4 in
Section 3.1) have to be corrected for the change in the grid. This can be done in a manner
similar to that of the ‘error’ (23).

The main advantage of this scheme is that the corrections of the boundary force are
distributed to the whole field at a high rate on the coarse grids and hence leading to an overall
faster convergence.

7.2. Impro6ed numerical accuracy

The surface force equals the force that the boundary excerpts on the fluid. This force balances
the stress in the fluid at the surface. Thus, if the flow equations are also valid through the
boundary, the pressure and/or the velocity gradients are piecewise continuous. Of course, a
polynomial approximation over a discontinuity to a piecewise function always yields ‘over-
shoot’ and hence low accuracy.

This problem has been recently addressed by Li [38] and Leveque and Li [39]. In these
papers, the authors introduce a non-isotropic interpolation so as to allow to an improved (yet
less than three) accuracy.

The problem under consideration is similar to that one encounters with shocks. For that
problem Ekstrand and Fuchs [40] have introduced an approach by which one subtracts the
shock-jump from the dependent variables, leaving only the smooth part for a polynomial
approximation. A similar approach could be easily introduced for the body force. By
subtracting from the velocity vector a (local) piecewise continuous component (which is related
to the local body force), one can use higher-order finite differences for maintaining higher-
order accuracy (in principle of any desired order), without the need to adjust the computa-
tional stencil coefficients to the problem.

8. CONCLUDING REMARKS

A method for describing complex boundaries on a Cartesian grid has been developed and
applied to several flow situations. Good agreement with experimental results and simulations
using body fitted grids were achieved.

The way in which the boundary velocity is determined is important for the order accuracy
of the solution. Lagrangian interpolation was shown to give higher-order accuracy than taking
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a Gaussian average. However, the Gaussian average gives faster and more stable convergence
of the boundary, furthermore one sees very little difference between the approaches in terms
of length of the recirculation zone, drag coefficient, etc. Therefore, the Gaussian average is
probably more feasible to use in any practical flow situation.

Considering very slender solid bodies, e.g. the turbine blades, one needs either to develop a
different way to distribute the source terms to be able to apply no-slip conditions on the
surfaces or, which is the natural solution, to introduce adequate spatial resolution.
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